3ER SEMINARIO FUNDICIÓN Y REFINERÍA
26/04/2018

“Innovative Sulphuric Acid Production for high strength smelter off-gases using the CORE™ System”

Rene Dijkstra
Acid Technology Manager
Chemetics Inc.
“Innovative Sulphuric Acid Production for high strength smelter off-gases using the CORE™ System”

- Design and Supply of Sulfuric Acid plants

- Equipment Fabricator
“Innovative Sulphuric Acid Production for high strength smelter off-gases using the CORE™ System”

Chemetics Head Office in Vancouver

Chemetics Fabrication Facility (Toronto)

Local representatives in:
- Morocco
- Tunisia
- Russia
- Chile
- Peru
- Brazil
- China
- India
1. **INTRODUCTION**

- The smelting of non-ferrous metals produces off-gases containing SO$_2$ which typically are converted to Sulfuric Acid.
- Recent innovations in smelter technologies have increased the concentration of SO$_2$ in the off-gases.
- Smelter Off-gases require additional oxygen before entering the acid plant.
- Current acid plant technologies require addition dilution of the smelter off gases to limit the SO$_2$ concentration to ~12.5 vol%.
- This presentation will briefly discuss existing technologies and then focus on an Innovative approach to dealing with higher SO$_2$ concentrations using the Chemetics CORE™ System.
“Innovative Sulphuric Acid Production for high strength smelter off-gases using the CORE™ System”

• **Conventional Sulfuric Acid Plant**

 ![Diagram of the process](image)

 - Dilution Air used to control SO_2 concentration below $\sim 12.5 \text{ vol\%}$
 - Results in very large acid plants to cope with diluted gas flows
 - Plant size increases as smelter Off-gas concentration is higher
“Innovative Sulphuric Acid Production for high strength smelter off-gases using the CORE™ System”

- Chemetics High Strength (CHS™) / MECS Pre-converter System

- All dilution air is mixed with a portion of smelter off-gas to create ~12.5 vol% gas
- After the CHS converter all remaining smelter gas is added
- Additional Equipment is required
 - Air/SO₂ Blower
 - Second Drying Tower
 - CHS Converter with single catalyst bed
- Not suitable for all Smelter Off-gas
- Possible to retro-fit to existing plant
- Proven and reliable equipment
- Can be operated as conventional plant at reduced rate
“Innovative Sulphuric Acid Production for high strength smelter off-gases using the CORE™ System”

- **Outotec Lurec System**

 - Recycle of process gas after bed 3
 - Increased gas flow and SO$_3$ presence reduces peak bed temperature
 - Additional Equipment is required
 - SO$_3$ recycle Blower – Tough duty!
 - Larger Converter
 - 5th Catalyst Bed
 - Typically not possible to retro-fit to existing plant
 - SO$_3$ Recycle Blower failure is immediate risk to plant due to overheating
 - Can be operated as conventional plant at reduced rate
“Innovative Sulphuric Acid Production for high strength smelter off-gases using the CORE™ System”

- **Chemetics CORE™ System**

 ![Diagram]

 - **SO₂** conversion in special cooled reactor
 - **Air/Oxygen** only required to maintain desired **O₂:SO₂** ratio
 - Less equipment compared to conventional plant
 - Highest energy recovery
“Innovative Sulphuric Acid Production for high strength smelter off-gases using the CORE™ System”

- **Comparison of Plant Size (Gas to Converter)**

![Graph showing comparison between Conventional and CORE™ plant size](chart)

- Plant size dependent on both SO_2 and O_2 concentrations in smelter off-gas
- CORE™ design allows use of Oxygen to reduce plant size further
“Innovative Sulphuric Acid Production for high strength smelter off-gases using the CORE™ System”

- **CORE™ (Cooled Oxidation Reactor)**
“Innovative Sulphuric Acid Production for high strength smelter off-gases using the CORE™ System”
“Innovative Sulphuric Acid Production for high strength smelter off-gases using the CORE™ System”

- **CORE™ (Cooled Oxidation Reaction)**

- The Chemetics CORE™ Converter is the only commercially available isothermal converter system for SO₂ oxidation.
- Continuous removal of the reaction heat allows the process temperature to be controlled within the operating limit of the catalyst.
- Highly stable and easy to control (coolant control only)
- Standby mode keeps reactor hot during smelter interruptions
- Demonstration unit has over 8 yr operating record
“Innovative Sulphuric Acid Production for high strength smelter off-gases using the CORE™ System”

- Smelter upgrades – Acid Plant in good condition
 - Use CORE System in Add-On configuration
 - CORE System handles additional SO$_2$
 - Existing acid plant continues to operate as before
Smelter upgrades – Acid Plant in good condition

- Use CORE™ System in Add-On configuration
- CORE System handles additional SO$_2$
- Existing acid plant continues to operate as before
- Small additional investment
- Additional benefit: High Purity Acid & Steam
“Innovative Sulphuric Acid Production for high strength smelter off-gases using the CORE™ System”

Existing Double absorption Acid Plant

Ambient air

SO₂-Gas

Drying

Main Blower

HX

HX

HX

HX

Steam Boiler

Intermediate Absorber

Intermediate Absorber

Final Absorber

Stack

CORE®

Add-on Unit

SO₂-Blower

Gas-Gas Heat Exchanger

CORE™ Converter

Coolant circulation

Start-up heater

Fuel (start-up)
“Innovative Sulphuric Acid Production for high strength smelter off-gases using the CORE™ System”

- Smelter upgrades – Acid Plant in Bad condition

 OR

New Smelter / Acid Plant installation

- Use CORE™ System with in-line configuration
 - Double Absorption configuration
 - Single Absorption with Regenerative tail gas scrubber
- CORE System handles all smelter Off-gas
- Highest Energy Recovery using single boiler
- Smallest plant size
- Highest reliability
- Lowest investment cost
“Innovative Sulphuric Acid Production for high strength smelter off-gases using the CORE™ System”

- CORE In-line configuration (Double Absorption)
“Innovative Sulphuric Acid Production for high strength smelter off-gases using the CORE™ System”
“Innovative Sulphuric Acid Production for high strength smelter off-gases using the CORE™ System”

<table>
<thead>
<tr>
<th></th>
<th>Conventional</th>
<th>CHS™</th>
<th>Lurec™</th>
<th>CORE™</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₂ < 12.5%</td>
<td>✓✓</td>
<td>✓</td>
<td>✓</td>
<td>✓✓</td>
</tr>
<tr>
<td>SO₂ > 12.5%</td>
<td>✗</td>
<td>✓✓</td>
<td>✓</td>
<td>✓✓</td>
</tr>
<tr>
<td>New Plant Design</td>
<td>✓✓</td>
<td>✓✓</td>
<td>✓✓</td>
<td>✓✓</td>
</tr>
<tr>
<td>Expansion/Retrofit</td>
<td>✗</td>
<td>✓✓</td>
<td>✗</td>
<td>✓✓</td>
</tr>
<tr>
<td>Equipment Size</td>
<td>✗</td>
<td>✓✓</td>
<td>✓✓</td>
<td>✓✓</td>
</tr>
<tr>
<td>Equipment count</td>
<td>✗</td>
<td>✗</td>
<td>✓✓</td>
<td>✓✓</td>
</tr>
<tr>
<td>Oxygen Enrichment</td>
<td>✗</td>
<td>✓✓/✓</td>
<td>✓✓/✓</td>
<td>✓✓</td>
</tr>
<tr>
<td>Smelter interruptions</td>
<td>✓✓/✓</td>
<td>✓✓/✓</td>
<td>✓✓/✓</td>
<td>✓✓</td>
</tr>
<tr>
<td>Energy Efficiency</td>
<td>✗</td>
<td>✓✓</td>
<td>✓✓</td>
<td>✓✓</td>
</tr>
<tr>
<td>Operability</td>
<td>✓</td>
<td>✓✓</td>
<td>✓✓</td>
<td>✓✓</td>
</tr>
<tr>
<td>Reliability</td>
<td>✓</td>
<td>✓✓</td>
<td>✗</td>
<td>✓✓</td>
</tr>
</tbody>
</table>
Conclusions

• The **CORE** System allows for direct processing of high strength smelter gases without unnecessary dilution
• If Oxygen is available then a CORE system becomes much smaller and even more attractive
• Combining CORE with Regenerative Scrubbing further reduces CAPEX and improves operational flexibility and emissions
• Once a regenerative scrubber is installed it can easily be adapted to capture other SO_2 emissions
Questions?....

Contact:
Claudia Araya Bravo
Business development manager for Chemetics in LatinAmerica
claudia.araya@jacobs.com